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Abstract. We show that depending on fhe disorder. a small noise added to the threshold 
distribution of the fuse network may or may not completely change the subsequent breakdown 
process. When the threshold distribution has a lower cutoff at a finite value and a power- 
law dependence towards large thresholds with an exponent which is less than 0.16 f 0.03, the 
network is not sensitive to the added noise, othenvise it is. The transition between sensitivity and 
insensitivity appears to be second order. and is related to a locali~ation-delocaiizatio" transition 
observed earlier in such systems. 

Suppose one manufactures a set of machine parts, say, parts which are identical to 
within some predetermined tolerance. One may ask whether this predetermined tolerance 
is small enough so that one may with reasonable certainty predict the strength and fracture 
properties of each member of the set. If it is, then testing one member of the set will give 
a representative idea of what is to be expected from the other members. However, fracture 
is a highly correlated process where singularities in the stress field are caused by fractures 
opening, and these singularities in turn produce more cracks. Thus, it is intuitively very 
likely that the eventual fractures forming will be very sensitive to what may appear as small 
initial differences between various samples, with a result, for example, that the fracture 
toughness may vary considerably from sample to sample. Is it therefore possible to define 
the concept of tolerance in the sense that if two members of a set are equal to within'a 
certain limit, they will have the same fracture properties? It is the aim of this letter to discuss 
this question. We use the fuse model, originally introduced by de Arcangelis et al [I], as 
a model system. This model has proven itself to be extremely rich in addition to capturing 
some of the essential features of brittle fracture - see [2] for a throrough discussion of 
this. We find that whether rupture develops in a manner which is unpredictable in the 
sense discussed above does not depend on the noise distribution, but on thedistribution of 
local strengths of the system itself. For some strength distributions, the network is sensitive 
to the initial added noise, and for other distributions it is not. We also find numerically 
that there is a second-order phase transition separating the sensitive from the non-sensitive 
regime. We suggest that this phase transition reflects a localization-delocalization transition 
previously seen in this system [3,4]. 

We work with a square lattice of size L x L oriented at 45' between two bus bars. In the 
direction parallel to the bus bars, the lattice is periodic. Each bond in the lattice is a fuse, 
i.e. it acts as an ohmic resistor as long as the current i it carries is lower than some threshold 
current-f. If the current exceeds this threshold, the fuse 'blows: and turns irreversibly into 
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an insulator. Each bond, i.e. fuse, is assigned a threshold t from a (cumulative) statistical 
distribution P(t).  There are no spatial correlations built into the way the threshold values 
are assigned. After the thresholds have been assigned, we imagine setting up a potential 
difference between the two bus bars, which is slowly increased. As fuse after fuse reaches 
its threshold current and burns out, the conductivity across the network decreases until it 
drops to zero. At this point a band of blown fuses has formed which cuts the network in 
two. 

The breakdown process is highly complex, with long-range correlations developing 
as it advances towards rupture. This is most easily seen through the way we actually 
simulate the breakdown process numerically. Each time a fuse has blown, we recalculate 
the current distribution within the network by solving the Kirchoff equations for a unit 
voltage difference between the bus bars. For each bond k, we calculate the ratio i k / t k .  
We then search for the maximum of this ratio, max&/tk). The corresponding bond is 
the next to be cut, and this will happen at a voltage difference l/max&/&). At the 
beginning of the breakdown process when few bonds have been cut, the current distribution 
is very narrow, i.e. the bonds all cany nearly the same current (and when no bonds have 
been cut they all carry exactly the same current). Thus, the bonds which are likely to 
break, i.e. those bonds whose ratio iw/rx is large, are those whose thresholds tx are small: 
these are the weak bonds. However, as the rupture process evolves, the current distribution 
becomes wider and wider, and eventually a large ratio i r / t k  may be caused by a large 
current ix rather than a small threshold tk .  Towards the end of the breakdown process, 
this is the typical case. We may therefore split the breakdown process into three regimes 
[5 ] :  (1) the disorder regime, where the bonds break because they are weak, so that it is 
the threshold distribution which governs the breakdown process, (2)  the competition regime 
where the current distribution is roughly as wide as the threshold distribution, causing the 
breakdown to be a subtle cooperative process between the two distributions, and finally, (3) 
the current-governed regime where bonds break because they cany a large current. This 
regime manifests itself through a single macroscopic unstable crack eating its way through 
the network, and eventually breaking it apart. The disorder regime (1) is characterized 
by the nucleation of microcracks, and is essentially a process in which bonds are cut at 
random (since there are n o  spatial correlations in the way the thresholds were assigned). 
The competition regime (2)  resembles supeficially the disorder regime, but the long-range 
correlations that are developing through the current distribution result in subtle scaling laws, 
for example, in the current-voltage characteristics of the network [5 ] .  

The picture we have presented above is generic. Nothing has been said about the 
threshold distribution, P(r ) .  It has earlier been argued that in the limit of infinitely large 
lattices, the breakdown process is completely determined by the strength of the singularities 
of the threshold distribution for t  + 0 and t + ca [3]. These two singularities, P ( t )  - @ 
for r --f 0 and 1 - P ( t )  - f-0- for t + CO, are characterized by the two exponents @Q 

and &,. Depending on these two exponents-the control parameters-the fracture process 
develops differently, even though the general characteristics sketched above remain the 
same. The behaviour of the breakdown process may be classified into distinct phases. 
There are at least five such phases. ,(1) If either $0 or &, is zero, the disorder is so large 
that the current distribution is never able to compete with it. The breakdown process in this 
case remains a random percolation process until the lattice is broken apart. This is because 
the only constraint on the breakdown process from the current distribution is that the bond 
that may break carries a current different from zero. This leads to the breakdown process 
being a screened percolation process [6],  and therefore, belonging to the universality class 
of standard percolation. In particular, a finite percentage of bonds must be broken in order 
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to break the network apart in the limit of infinitely large lattices. (2) If both.$o and &,, are 
small - a mean-field calculation 131 puts both the critical 40 and at the value two-the 
process is no longer in the universality class of percolation, but still a finite percentage of 
bonds must be broken in order to break the network apart. (3) When q50 is small (less than 
two according to mean-field theory) and &, is large (i.e. larger than two), the network is 
very weak in the sense that only a fraction of bonds approaching zero needs to be broken 
in order to break the network apart. More precisely, if the lattice size is L x L,  the number 
of bonds to break scales as L’.7, irrespective of the two control parameters @o and &. The 
fracture process proceeds by a significant number of ‘microcracks’-small clusters of broken 
bonds-developing before the process goes unstable and a macroscopic crack eventually 
develops, breaking the network apart. (4) When 60 is large (larger than two according to 
mean-field theory) and cpm is small (smaller than two), the number of bonds that breaks 
before the entire network ruptures scales with the lattice size L toa  power smaller than two, 
but which, unlike the previous case, now depends on the two control parameters 171. As with 
phase (3), the number of bonds belonging to the final unstable crack breaking the network 
apart forms a zero subset of the total number of bonds that break. The key difference 
between phases (3) and (4), in terms of the way the disorder influences the fracture process, 
is that in phase (3) microcracks are being induced because bonds are very weak, while in 
phase (4) new microcracks open as those already in existence are stopped by very strong 
bonds. (5) This is where both $0 and & are large. According to a mean-field calculation, 
‘large’ means here larger than two. An indirect numerical calculation [4] puts the transition 
for q40 = CO at & = 0.16. Another numerical calculation [SI puts the critical 40 at 1.4 for 
& + CO. The,defining characteristic of this phase is localization. That is, few microcracks 
form before one of them becomes unstable and eventually cuts the lattice apart. By ‘few’ 
we mean that the fraction of broken bonds that do not belong to the unstable crack which 
eventually breaks the network, goes to zero as L --f CO. 

In this letter we introduce the concept of sensitivity in connection with fracture, 
borrowing it from the study of cellular automata [9] where it is known as damage spreading, 
a name which would be very misleading in connection with fracture, as it has nothing to do 
with the already well established concept of damage in fracture. Let us define the concept 
operationally in terms~ of the fuse network. We set up two identical networks-identical 
in the sense that each corresponding fuse in the two lattices has the same threshold value 
assigned to it. The breakdown of these two copies will of course evolve identically. Let 
us now choose a bond in, say, lattice A and set its threshold value to infinity, thus making 
it unbreakable. The threshold of the corresponding fuse in lattice E is set to zero, thus 
making sure it will break immediately. In this way we introduce a small difference between 
the two copies, and the question we pose is: Will the difference between the two lattices, in 
terms of where the cracks appear, grow as the fracture process proceeds, or will stay small, 
that is, of the order of one bond. If the difference grows, the networks are sensitive. 

The interest in defining such a concept lies in the concept of tolerance discussed in the 
introduction. In terms of the fuse network, we imagine producing a set of such networks, 
all with the same distribution of fuse strengths except for an added noise making each pair 
of corresponding fuses slightly different. The strength and distribution of this added noise 
correspond to the tolerance. If the added noise is sufficient to induce the initial microcracks 
appearing under load to happen at different places from copy to copy, and if they are 
sensitive in the sense introduced above, then the fracturing of different copies will develop 
differently. In other words, predictions on how other lattices will behave cannot be made 
from testing one single copy. 

Thus, the question of whether an added noise in the assignment of thresholds is enough 
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to change the breakdown properties of the network is a question of the noise being strong 
enough to change where the initial microcracks develop, and then if yes, whether the network 
is sensitive or not. 

Whether the noise is sufficient to change the initial microcracks i s  a question of order 
statistics [lo]. Let us assign the fuse strengths according to the rule 
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(1) D ri = ri 

where rj is a random number drawn from a uniform distribution between zero and one. D 
is the control parameter; small values of ID] correspond to small disorder and large values 
of ID[, to large disorder. In terms of the cumulative threshold distribution, P(t). which is 
the probability to find a threshold value smaller than or equal to t ,  this corresponds to 

(2) 

Thus, in terms of the two control parameters q50 and &, we see that when D 0, 
D = -l/& while $0 -+ 00, but for D > 0, D = l/& while q5m --f CO. We will base 
our arguments on this distribution, even though it does not cover all relevant disorders (for 
which both $0 and $- simultaneously are finite): However, it is easy, as we will show, to 
extrapolate our results to other regions of the parameter space. Let us also assume that the 
cumulative distribution of added noise is of the form 

where 0 < t c 1 if D > 0 
where 1 < t c 00 if D < 0. I 1 - t ' lD 

P(t )  = 

where 0 c 6t < 6tm and 

the noise is 

> 0. 
Let us now assume that D > 0. Then the threshold distribution for the bonds including 

pR(t) = d s  l' du dup(u)r(v)6 (5  - (U + U)) (4) 

where p ( t )  = dP(t)/dt and r(r) = dR(t)/dt. Integrating out the Dirac delta function gives 

For t of the order of St,, or smaller, the distribution PR(~)  behaves as 

PRO) = a t ' J 0 + ~  (6) 

where a is a positive constant. For larger t it behaves as 

(7) 

Suppose we draw N (= 2 x L2) thresholds from the distribution PO). We order them 
so that tc,, < rcL., < . . . < qW. The expectation value for the threshold number k in this 
sequence is 

PR(t) = P(t) = t I ID  , 
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where we have used the general expression P(t(k)) = kj(N + 1).  We also form an ordered 
sequence of the thresholds obtained with perturbed distribution (5), t&, Q Q . . . 6 t;N,. 
For small values of k, the expectation value of the kth element of this sequence is 

We may now pose the question of whether the added noise changes the sequence of weak 
bonds or not? If the sequence is changed, we have 

( k )  > kk+U . (10) 

Using equations (8) and (9) in this inequality leads to the expression 

In particular, for large N and k, (1 1) may be written as 

k < (i)"Dq N. 

For any fixed k ,  (11) and (12) are always true for large enough N. Thus, no matter how 
small the added noise is, it does change the sequence of the weakest bonds. It should be 
noted in this argument that the upper cutoff in the noise distribution, St-, does not enter in 
the discussion: No matter how small it is, the noise will be relevant for the weakest bonds 
when the network is lage enough. 

We now repeat this analysis for D < 0. The noise distribution is still given by equation 
(3), while the threshold distribution now is 

P ( t )  = 1 - tllD (13) 

for 1 < t < 00. The threshold distribution after adding the noise is 

For t close to 1, we have 

(15) 
a 

PR(t)  = -(t  - I ) l+V 
D 

rather than 

(16) 

for the unperturbed threshold distribution. Again ordering the sequence of thresholds 
from the unperturbed distribution and the perturbed distribution, equation (IO) leads to 
the inequality 

1 
P ( t )  = - (t  - 1) 

D 
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which is satisfied’for sufficiently large networks. Thus, also in this case, the noise will 
change the sequence of the fuses having the smallest thresholds. As before, the upper 
cutoff of the added noise, 6t,, does not enter the discussion. 

Hence, this chain of arguments leads to the conclusion that whether or not the fuse 
network is sensitive to the added nqise, does not depend on the noise for large enough 
systems. The next question is whether it depends on the threshold distribution, P ( t )  as 
such. Thus we investigate whether the system is sensitive or not in the sense introduced 
above: starting with two identical copies of a fuse network except for one pair of fuses, 
which are made infinitely weak and infinitely tough, respectively, we measure whether the 
two copies evolve differently or identically during breakdown. 

It should be noted here that if we find that the network is sensitive with respect 
to changing the threshold of only one bond, then it is sensitive with respect to adding 
everywhere a noise to the threshold distribution. However, the opposite is not true: as we 
will see for a certain regime of disorder (D >I 0), the network is not sensitive with respect 
to changing the threshold value of a single bond, but is sensitive with respect to adding 
noise everywhere. 

We have simulated the fuse network numerically, generating ensembles containing from 
1000 to 200 samples each and ranging in size from 10 x 10 to 128 x 128, using the threshold 
distribution (1) with -3 c D < 1. Each time a fuse blows, we recalculate the current 
distribution in what is left of the network, using the conjugate gradient method [11]. This 
algorithm is eminently parallelizable, and ran very efficiently on a Connection Machine CM5 
computer. Each sample consists of two copies of the same network, but with one central 
bond different. Both networks are completely broken apart, and afterwards the macroscopic 
crack breaking each of the two lattices is identified and compared. The order parameter we 
have used is 
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where nf is unity if bond i of lattice A belongs to the final crack, otherwise it is zero. 
Likewise, n,” refers to lattice B. The (logical) function xor is one if the two arguments a e  
different, otherwise it is zero, i.e. xor ( I ,  0) = xor (0, 1) = 1 and xor (1, 1) = xor (0.0) = 0. 
If the system is sensitive, we find that S + 1, and if it is not, S + 0. In figure 1, we plot 
S as a function of the control parameter D defined in equation (1) for various lattice sizes. 
As is evident, there is a first-order transition (i.e. a discontinuity) in the order parameter 
S for D = 0, and a second-order transition (i.e. the slope of S = S ( D )  diverges) for a 
negative D = D,. We determine D, = -6.2 f 1.0 by plotting De&) as a function of 
L-’l”,  where De&) is the D-value for lattice size L where S(D) has the largest slope, 
and I / u  is chosen so that D,ri(L) falls on a straight line. We show our fit in figure 2 and 
the exponent I/w determined from here gives an estimate of the correlation length exponent 
v = 5 f 2 .  

Thus, we see that there is a window -6.2 < D < 0 in which the fuse network is 
sensitive. If D > 0, then $0 = 1/D and & --t CO. Within this range of $o-values the 
network undergoes a localization-delocalization transition. which numerical simulations [SI 
put at $0 = 1/D = I .4. There is no trace of this transition in the order parameter S. For 
negative D, there is a sensitive phase, which exists for 1/6.2 = 0.16 and $0 --t CO. 
The localization-delocalization transition in this range of parameters has been, as already 
pointed out, numerically determined I41 to appear at $m = - I / D  = 0.16. The phase 
transition in S seen at D = -6.2 is, therefore, likely to be related to this transition. 
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4 -3 -2 - 1  0 1 
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Figure 1. The order pameter 5 defined in equxion (18). as 3 function of rhc control parameter 
D dcfincd in equation (1) for Isnice sizes 16 (2W samples), 32 (200). 64 (200). and 128 (200). 
The difference between the two copiec constiluting csch sample is the rtrenglh of 3 single bond. 

Figure 2. D.B determined from figure I and additional lattice sizes not shown, plotted against 
L-'I". From this plot we estimate t h l  D, = -6.2 f 1.0 and U = 5 * 2. 
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Why does there seem to be a connection between the localization~elocalization 
transition and the existence of a sensitivity-insensitivity transition for D e 0, but not 
for D > O? If, in the localized phase, the first bond to break initiates the final macrocrack, 
we expect the localized phase to coincide with the sensitive phase. This seems to happen for 
D c 0. We may understand this by noting that in this case the localization-delocalization 
transition is caused by crack arrest: The microcracks are a priori all unstable. However, 
if the distribution of strong elements is sufficiently large, the crack is stopped by hitting 
a bond strong enough for the enhanced currents around the crack tip to be insufficient to 
continue the growth of this particular crack. Thus, when the disorder is small enough, the 
first microcrack cannot be ‘held‘ back, and both sensitivity and localization follows. On the 
other hand, when the system is in the delocalized regime, a diverging (with the lattice size) 
number of microcracks develop before one of them eventually goes unstable and develops 
into a macroscopic crack. Thus, a small initial perturbation among the microcracks will 
typically not affect the macrocrack that eventually develops, and the network is thus not 
sensitive. 

For D > 0, the localized phase is different. In this case we have a localized phase 
even though there is a diverging number (with lattice size) of microcracks forming before 
one of them goes unstable and grows into the macroscopic crack that breaks the network 
apart. This is possible since the ratio between the number of bonds forming the microcracks 
and the number of bonds belonging to the final crack goes to zero: the total number of 
bonds that has broken throughout the entire fracture process is dominated by the final crack. 
I p  this case, the probability that the one artificially induced microcrack in one of the two 
copies actually should be the one that goes unstable falls to zero with the lattice size. This 
happens since there is a power-law distribution of bonds whose thresholds are very weak, 
so that there always is a ‘mist’ of microcracks before one goes unstable, no matter how fast 
this power law distribution falls off if the lattice is large enough. Thus, there will be no 
sensitive phase in this case, even though there is a localized phase. 

We now reIurn to the question of sensitivity in connection with the added noise in the 
threshold distribution. In figure 3, we show S as a function of D for an added disorder 
drawn from a uniform distribution between zero and 6rm, = 0.1. There is the same second- 
order transition at D = -6.2f 1.0 in this case as there is for the case when the difference 
between the two copies is limited to one pair of bonds. This is no surprise from the above 
discussion. However, for D t 0, there is a difference: now, there is a sensitive phase for 
all D > 0, while there was none when only a single bond was changed. We interpret this in 
the following way. As the added noise affects the ordering of all weak bonds, and not only 
a single one, we expect that the one eventually leading to the final crack is also affected. 

We conclude by recapitulating what has been found. We have investigated whether the 
fuse model is sensitive to the addition of noise in the threshold distribution, i.e. whether 
two networks, identical except for the added noise, develop the same macroscopic cracks or 
not. The disorder in the fuse model is completely described by two parameters. We have 
investigated the sensitivity of the model along a curve in this two-dimensional parameter 
space by two very different types of noise. When a single bond is made unbreakable in one 
copy and extremely weak in the other, we get a sensitive region for -6.2 c: D < 0. At 
the lower end the order parameter disappears continuously with a large slope, while on the 
other side the order parameter jumps discontinuously to zero. When a weak noise is added 
everywhere, the sharp jump at D = 0 from a sensitive to an insensitive region disappears 
and a sensitive region develops for D > 0. The negative D region remains unchanged. 
We identify this transition with a localization-delocalization transition. The disappearance 
of the second insensitive region when going from strong local disorder to weak nonlocal 
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Figure 3. The order parameter S for 200 ‘samples of sizes 32 x 32 and 64 x 64, where the 
difference between the two copies in each sample is a noise drawn from a flat distribution 
between zero and 0.1 added to each bond (b). We show for comparison the corresponding curve 
for lattices of size 64 x 64 when the difference between each copy is a single bond ((a), as in 
f igw 1). 

disorder is due to differences in crack arrest mechanisms in the two parts of the parameter 
space: 
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